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Abstract

The lack of polar symmetry in two-bladed rotors

leads to equations of motion with periodic coeffi-

cients in axial flight, which is contrary to three or

more bladed rotors that result in constant coefficient

equations. With periodic coefficients, the analysis

becomes involved, as a result very few studies have

been directed towards the analysis of two-bladed ro-

tors. In this paper, the aeroelastic stability of two-

bladed proprotor/pylon/wing combinations is exam-

ined in high speed axial flight. Several parametric

studies are carried out to illustrate the special nature

of two-bladed proprotors and to better undemtand

the mechanism of whirl-flutter in such rotors. The

wing beam bending mode for two-bladed rotors is

found to be stable over the range of parameters ex-

amined, a behaviour very different from three-bladed

rotors. Also, the wing torsion mode exhibits a new

type of instability similar to a wing torsional diver-

gence occuring at 1/rev frequency. This type of be-
haviour is not seen in three and more bladed ro-

tors. The interaction between wing chordwise bend-

ing and torsion modes is found to be much greater

in the case of two-bladed rotors and, over the range

of parameters considered, these two modes govern

the stability of the system.
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1 Introduction

Aeroelastic stability of a tiltrotor aircraft in forward

flight has been the subject of considerable research

since the 1960's. In high speed axial flight, tiltro-

tots are subject to an instability known as propro-

tor whirl flutter. Due to high inflow through the

rotor in this flight mode, large rotor forces depen-

dent on the in-plane motion are generated. These

forces are larger in tiltrotor aircraft than in conven-

tional propeller driven aircraft due to large blade flap

and lag motions in case of tiltrotors. With increas-

ing airspeed, the rotor forces and the pylon/wing

motion interact with each other to a point where

the rotor forces become destabilizing and the ro-

tor/pylon/wing system becomes unstable.

Most of the rt_soarch on proprotor whirl flutter has

focused on three or more blades. Several inves-

tigations of this phenomenon were conducted us-

ing pylon pivot models. Reed Ill presented a re-

view of these early efforts and highlighted some

of the key is.uues associated with this instability.

Johnson [2] developed a comprehensive mathemati-

cal model of a tiltrotor including a modal repre-

sentation of the wing, and for high speed forward

flight. Analytical results obtained with this analy-

sis showed good correlation with full scale proprotor

tests and the analysis was later extended to include

elastic blades and helicopter and conversion modes

of operation. Kvaternik and Kohn [3] carried out
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an experimental parametric investigation of whirl-

flutter for a proprotor mounted on a rigid pylon with

flexibility in pitch and yaw. Results of this study

showed that proprotor whirl flutter can be predicted

with linear stability analyses using two-dimensional,

quasi-steady aerodynamics for the blade loading.

Nixon[4. 51 conducted parametric studies for aeroe-

lastic stability of a tiltrotor in forward flight using a

finite element based comprehensive tiltrotor aeroe-

lastic analysis. The effects of several design parame-

ters such as rotor flap and lag frequencies, pitch-flap

coupling, wing stiffness and sweep were examined

to determine their effect on aeroelastic stability in

the high speed axial flight mode. The rotor was

assumed to be in a state of autorotation, i.e., ro-

tor torque was not transferred to the wing and the

wing vertical bending slope at the tip did not af-

fect rotor inplane motion. Johnson [2] showed that

this assumption gives conservative estimates of whirl

flutter stability. Lag frequency tuning was found to

be a practical method for increasing flutter speed in

axial flight and forward sweep of the wing was found

to be destabilizing (Nixon [4' 5]). The above models

rely on experimental data to model the lag frequency

variation with blade collective pitch and the distri-

bution of blade flexibility inboard and outboard of

the pitch bearing. To reduce the dependance on ex-

perimental data, Hathaway and Gandhi [6] have re-

cently made some refinements to the model which

allow first principles based modeling of the lag fre-

quency variation and blade flexibility distribution.

In recent years numerous approaches for the im-

provement of tiltrotor whirl mode boundaries for

three-bladed tiltrotors have been investigated. Srini-

vas and Chopra [71, Popelka [81 et al., Corso [9] et al.

and, Barkai and Rand {10] investigated the use of

aeroelastic tailoring of composite wing and rotor

blades to enhance whirl mode stability of a tiltrotor

in forward flight. Nixon [11] et al. presented a review

of the experimental and analytical efforts for sta-

bility augmentation of tiltrotors through aeroelastic

tailoring of the wing and rotor blades. Srinivas[12l

et al. carried out studies on improving whirl mode

stability of tiltrotors by using advanced geometry

blades with tip sweep and tip anhedral/dihedral.

Acree[13l et al. investigated the effect of the chord-

wise positions of the rotor blade aerodynamic center

and center of gravity on stability. Rearward offsets

of the aerodynamic center with respect to the blade

elastic axis and pitch axis were found to give large in-

creases in the stability boundary, with the effect be-

ing most dominant for offsets at the outboard part

of the blade. Acree [14] also analyzed the effect of

blade tip sweep on whirl mode stability of the V-22

tiltrotor with a tip mass extended on a boom for-

ward of the leading edge to compensate for the aft

shift of the tip center of gravity due to sweep.

All of the above studies were carried out for three-

bladed proprotors, although Johnson [2l presented

some results for a two-bladed propeller as well. Un-

like a rotor with three or more blades, a two-bladed

rotor lacks polar symmetry, which leads to propro-

tot equations of motion containing periodic coeffi-

cients. Thus, the stability analysis in the case of a

two-bladed rotor is more involved and as a result,

a lot less attention has been devoted to two-bladed

configuratic, ns. In June 1998, whirl flutter was en-

countered during a flight test of the Pathfinder air-

craft, fitted with several two-bladed propellers to be

used on the Helios aircraft. These aircraft, built un-
der the Environmental Research Aircraft and Sen-

sor Technology (ERAST) program, have lightweight

and highly flexible wing structures and soft-mounted

propellers. The simplified analysis for two-bladed

rotors, when applied to the Pathfinder configura-

tion with thi._ Helios propellers, was unable to predict

the flutter encountered in 1998. Also, it is unclear

whether design guidelines established for preventing

whirl flutter instability for three or more blades can

be applied to the two-bladed case also. The peri-

odicity of the equations of motion for a two-bladed

proprotor may introduce new phenomena that re-

quire careful examination and scrutiny. Hence a sys-

tematic study of whirl flutter of two-bladed propro-

tors is carried out to determine the effects of various

design parameters on their stability.

2 Analytical Model

Figure 1(a) shows the coordinate systems used for

the rotor and wing. The fixed frame rotor forces,

which are transferred to the wing, are also shown.

Figure l(b) shows the geometry of the wing/pylon

system. Flap and lag motions of the rotor blades are

considered and, the blades are assumed to be rigid.

2.1 Rotor and Hub Structural Model

The equations of motion for a single rigid blade

in the rotating frame with flap and lag degrees of

freedom have been presented by Johnson [2]. These
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(a) Coordinate Systems for Rotor and Wing

Y

(b) Geometry of the Wing and Pylon

Figure 1: Coordinate Systems for Rotor/Wing and

Wing Geometry

equations include the effects of pylon translation and

rotation on the flap and lag motions,

i;(_; _ • "....(_)+_Z())+;Z_[-(_-2.x)_o_C_+(_x

• *** M ('_)
+ 2a_)sinCm] + S_ zp = _ _'-r (1)

ac

I_(_"(_)+ _¢(_)) + • "......

• . ML(m)
- ha_)cos¢.,] - I_;. = _ ac (2)

where/_(m), _(m) and Cm are the flap motion, lag

motion and the azimuthal position of the mth blade,

u_ and v; are the non-dimensional flap and lag fre-

quencies, respectively, and h is the distance between

the pylon pivot point and the hub. xp, yp and zp are

pylon translational degrees of freedom, as shown in

Figure 1, while ax, a_ and a, are pylon rotational

degrees of freedom. M_ rn) and M(L m) are respectively

the aerodynamic flap and lag moments of the mth

blade. The above equations can be written in matrix

form as,

[I;]_ R + [g;]flR + [liplp + [C;p];"= /14F-y-- (3)
O,C

l/j] (R W IK_I(R -k [[_p]p ----7 ML (4)
O_

where f_R and (R are vectors of the flap and lag

motions in the rotating frame while lff contains the

pylon degrees of freedom. For N blades,

_=[Z(, ) Z(_) ... _(_)]T

_R= [_(1) _(2)... _(N)] T

_::[_ u_ _ _ _ _.]r

Other matrices in Equations 3 and 4 are defined in

the Appendix. For coupling with the pylon/wing

system, the above equations must be transformed to

the fixed frame. Also, the pylon degrees of freedom

must be replaced by the wing-tip degrees of freedom.

This is accomplished using the following transforma-

tions,

_a = [T.F[fiF (R = [TRF](F /Y= [T^]I,_'T,p

where/_, and (F are the fixed frame rotor degrees of

freedom, while I_T_p is a vector containing the finite

element degrees of freedom at the wing-tip. [TRF]

is an N × N matrix relating the fixed frame rotor

degrees of freedom to the rotating frame degrees of

freedom, while [T^] is a transformation matrix that

depends on the wing sweep A and relates the pylon

degrees of freedom to the wing-tip degrees of free-
dom. fiE, _F, [TRF] and [TA] are as defined in the

Appendix.

For a two-bladed rotor, the collective flap (rio), dif-

ferential flap (f_l), collective lag ((0)and differential

lag ((1) motions comprise the fixed frame rotor de-

grees of freedom. In case of a three-bladed rotor, the

fixed frame motions are collective flap (f_o), cyclic

flap (_1c and _ls), collective lag (_0) and cyclic lag

((x_and _i,).

Note that, at, this stage, the number of blades is

assumed to be arbitrary so that the same analysis

can be applied to both two and three-bladed rotors.
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(a) Velocity and Force Components on a Typical
Blade Section

xx w: t2

Y

I

(b) Wing Element Degree,-of-Freedom

Figure 2: Blade Section Velocities and Wing Ele-

ment

2.2 Rotor Aerodynamics

Figure 2(a) shows the velocity components at a blade
section defined with respect to the hub plane. Aero-

dynamic forces are based on a linear strip theory

and the rotor is assumed to be in a state of autoro-

tation. The trim procedure is based on changing

the collective pitch until the thrust becomes zero.
Perturbations in the blade section velocities, for a

forward flight speed V, can be written as,

• • ._U T -= r(ot z -- "Jr (--XpSinl_m q- ypCOS_rn -- h(_ x

. V
cosCm + v% sinCm ) + -_ (_ cOSCm + otusinCm ))

= rSuTA + 5UT. (5)

+ axSmCm) + _'p_up : r(¢_- oucosCm * "

= r&,p_ + _up_ (6)

t_UR = --_pSin_gm -- XpCOS_)m + h(_xsin_bra -- _u

V

In Equations 5,6 and 7, JUTa, JUTe, 5upA, 5upB and

5uR are independent of the radial position r and

hence they may be factored out of the integrands of

the aerodynamic force integrals. The aerodynamic

moments on a blade can then be written in terms of

the aerodynamic coefficients (M#, Me etc.) and the

perturbation velocities (see Johnson[2]). For exam-

ple, the perturbation flap moment may be written

as_

J M(m-"--_)= M,_BTa + McJuTA + MxSun_ + %Jupn
ae

+ MoJO (8)

where J0 is the perturbation in the collective angle.

The perturbation velocities, 5UTa, JU-pB etc., are

functions of /3R, (R, WTip and ¢m for each blade,

and thus the right hand side terms of Equations 3

and 4 can be expressed in terms of the system de-

grees of freedom and moved over to the left hand

side of the equations.

2.3 Wing Structural Model

The wing structural model is based on a finite el-

ement formulation of an Euler-Bernoulli beam un-

dergoing beamwise bending, chordwise bending and

torsion, as shown in Figure 2(b). The axial degree of

freedom is not considered since the wing is assumed

to be rigid in axial direction.

2.4 Wing Aerodynamics

Wing aerodynamics is based on a quasi-steady

approximation and the aerodynamic stiffness and

damping matrices are determined and added to

the corresponding structural matrices. Wing sweep

(Figure l(b)) is taken into consideration in formu-

lating the wir, g aerodynamic matrices.
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2.5 Coupling of Rotor/Wing System
Couplingoftherotor/wingsystemessentiallycon-
sistsoftwoparts:(1)incorporatingtherotoraero-
dynamicandinertialforcesin thefixedframeinto
thewingmodel,and(2)incorporatingthewing-tip
degreesoffreedomintotherotorequationsofmo-
tion(seeSec.2.1and2.2),thisleadstoasystemof
equationswithperiodiccoefficients.In statespace
form,thissystemcanbewrittenas,

s

= A(¢)17 (9)

where (*) denotes a derivative with respect to the

azimuth, A(¢+2,) = A(¢) is a periodic matrix with

period 2, and !7 is a column vector of the 2m system

states.

2.6 Stability Analysis

The stability of the system defined by Equation 9 is

examined using Floquet analysis. The Floquet tran-

sition matrix ¢(2_r), relates the states of the system

at ¢ = 0 to the states at ¢ = 2_r,

_(2,) = ¢(2,)17(0) (Z0)

Each column of the Floquet transition matrix

(FTM) is determined by integrating Equation 9 with
a unit initial condition for one state and zero ini-

tial conditions for other states. Thus 2m integra-

tions need to be performed to obtain the FTM,

where 2m refers to the number of states. An effi-

cient method, developed by Friedmann et.al. [15], for

computing the FTM in a single integration pass is

used in the present study. Eigenvalues of the FTM

are called Floquet multipliers and are denoted by

0_ (i----1,2...2m). The system is unstable if any of

the Floquet multipliers have an absolute value larger

than unity (see Johnson [16], Nayfeh and Mook[17_).

Floquet multipliers are related to the Floquet expo-

nents (A_) as,

(11)

Real and imaginary parts of the Floquet exponents

are related to the conventional damping (¢',) and fre-

quency (wpi) respectively.

¢, = -Re(A,) = - _ln(E0,1)
LT[

1
wp_ = lrn(A_) = --ZOi

2.

(12)

(13)

u_

Beal21

Chord ,

Torsion

Rotating Blade

Freq. (per rev)

In-vacuo

1.02

1.85

see Fig. 3

0

Wing Freq. (per rev)

0.42

0.70

1.3

Table 1: Frequencies of the Baseline System

2

1.9

1.8

1.7

1.6

>..,
1.5

1.4

1.3

1.2

1.10

\
\

0.2 0.4 0.$ 0.8 1 1.2 1.4 1.$ 1.8 2

F]_ SpeedV/_R

Figure 3: Blade Lag Frequency as a Fhnction of Ve-

locity

A subscript 'p' for the frequency indicates that only

a principal value of the h,equeney can be determined

due to the fact that the logarithm of a complex num-

ber has many branches, giving values for Ai that

differ in frequency by integer multiples of the rota-

tional speed fL Compared to a constant coefficient

system, the periodic system is also described by nor-

mal modes (i.e, eigenvectors) and the roots ),i, but

for a periodic system the eigenvectors are periodic

functions rather than constants (see Johnson[16]).

The analytic_d model was validated by comparing

the frequency and damping variations with flight

speed, with predicted results obtained by Nixon [4]

for a three bladed rotor. Also, the whirl flutter

stability boundaries for a two-bladed propeller were

compared with the results reported by Johnson [21.

In both cases, the present results matched with those

of Nixon and Johnson.
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(b)Damping

Figure 4: Frequency and Damping as a Function of

Velocity for Baseline System (Two-Bladed Rotor)

3 Baseline System

The present model is used to obtain the frequency

and damping characteristics of two and three-bladed

rotor/wing systems. The baseline rotor/wing system

has the same properties as the baseline three-bladed

rotor used by Nixonl4]. No wing sweep is considered

in the present study. Table 1 shows the important

in-vacuo frequencies of this system. The collective

flap mode has a higher frequency because the blades

act as cantilevers in this mode due to a gimballed

hub. The in-vacuo lag frequency varies with collec-

tive pitch (and therefore flight speed) due to the dis-

tribution of lag flexibility inboard and outboard of

u.

w

C3

o
Z

E

2.7

2.4

2.1

1.8

1.5

1.2

0._¢

0.f

03

t

b J

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Flight Speed V/QR

(a) Frequency

0.3

0.2_=

O.i

0,15

'B.

0,1

005

(

-..0_
C 2 0.4 0,6 0.8 1 1.2 1.4 1.6 1.8 2

Flight Speed V/_IR

(b) Damping

Figure 5: Fn_uency and Damping as a Function of
Velocity for Baseline System (Three-Bladed Rotor)

the pitch bearing (Figure 3). The rotor has a radius

R=12.5 ft, Lock number "r=3.83, solidity cr=0.089,

pitch-flap coupling Kpa=-0.268 and rotational speed

f_=48 rad/s. The wing/pylon system has a span of

16.65 ft, a chord of 5.16 ft and a pylon mast height

of 4.28 ft. Three finite elements of length 4.55 ft

each are used to model the wing, with one pylon el-

ement of length 3.0 ft at the tip. The wing has a

beamwise stillness EIb=3.13 x 10 z lb-ft a, chordwise

stiffness EI_==8.48 x 10 z lb-ft 2 and torsional stiffness

GJ=l.62 x 10 7 lb-ft 2.

Figure 4 shows the frequency and damping charac-

teristics of the baseline two-bladed rotor. It must be
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notedthatthemodesarehighlycoupledandhence
theiridentificationisbasedonthephysicalfrequency
andthebehaviorofperiodiceigenvectors.InFigure
4,'b', 'c'and't' referto modesthatareprimarily
wingbeam,chordandtorsionmodesrespectively,
while'DO,'j3]'and'(l' aretherotorcollectiveflap,
differentialflapanddifferentiallagmodes.Thesame
nomenclatureisusedinallsubsequentfigures.

Shownin Figure 4 are the frequency and damping

characteristics computed using two methods: (1) us-

ing a full 48 state system with 3 wing elements and

1 pylon element representing the wing, and (2) us-

ing an 18 state system obtained by applying static

condensation to the wing equations and retaining

only the five wing-tip degrees of freedom, prior to

coupling with the rotor equations. The reduced sys-

tem captures all the essential modes quite well and

is computationally much faster than the full system.

Further results in this paper are based on the re-

duced order system.

Figure 5 shows the frequency and damping char-

acteristics of a three-bladed rotor having the same

non-dimensional properties as the two-bladed rotor.

As compared to the two-bladed rotor, two addi-

tional degrees of freedom are introduced in the three-

bladed rotor due to the flap and lag motions of the

third blade. Thus for a three-bladed rotor, there

axe five important rotor modes (Do, f_ + 1, _ - 1,

+ 1, _ - 1) compared to three rotor modes(Do,_l

and ¢'1) for the two-bladed case. In Figure 5,/_- 1

and _ - 1 refer to the low frequency flap and lag

modes respectively, while/_ -{- 1 and _ + 1 are the

high frequency flap and lag modes and Do is the col-

lective flap mode. The collective lag mode _0 is not

shown in Figures 4 and 5 since it has zero frequency

due to the assumption that the rotor is in a state of

autorotation.

A key difference between two and three-bladed ro-

tor behaviour can be seen in the wing beam mode

damping for the two cases. For the baseline three-

bladed rotor, the wing beam mode becomes unstable

for V/fiR > 1.19 as seen from the beam mode damp-

ing in Figure 5(b). However, it is evident from the

beam mode damping for a two-bladed rotor (Figure

4(b)) that the wing beam mode remains stable for

all flight speeds considered. An explanation of this

behaviour is presented in Section 4.1.

For a three-bladed rotor, there is an energy transfer

between the wing chord mode c, and the low fre-

quency lag mode, ( - 1, at the point where the ( - 1

frequency crosses the chord mode frequency (Figure

5(b), V/12R -- 0.2). The chord mode damping re-
duces slightly at this point since the damping in the

- 1 mode is lower. A similar interaction is seen

when the _ - 1 mode frequency crosses the beam

mode frequency at V/f'tR = 0.4 for the three-bladed

rotor (Figure 5), where the beam mode damping

shows a peak since, at this point, the damping in

the (i - 1 mode is higher than that in the beam

mode. Figure 4 presents evidence of similar energy

transfer between the differential lag mode ¢'1 and

the wing beam and chord modes for a two-bladed

rotor. This oceum at the points where the princi-

pal value of the (1 mode frequency crosses the wing

chord and beam mode frequencies at V/flR = 0.22

and 0.48, respectively (Figure 4(a)). As compared

to a three-bladed rotor, the energy transfer between

the rotor lag and wing modes is smaller in the case of

a two-bladed rotor as indicated by the smaller peak

in the beam mode damping for the two-bladed ro-

tor (Figure 4(b)). Also, the valley in the chord mode

damping at V/_R = 0.22 (Figure 4(b)) is very small

for the two-bladed rotor. Unlike a three-bladed ro-

tor the frequencies need not actually cross in case of

a two-bladed rotor (i.e., only their principal values

cross) since, for a two-bladed rotor, Floquet mul-

tipliers govern the interaction between the modes.

For the two-bladed rotor the energy transfer occurs

when both the real and imaginary parts of the Flo-

quet multipliers of two modes approach each other.

In the case of a two-bladed rotor, for V/f'tR > 1.1,

the Floquet multiplier for wing torsion becomes real,

which causes a split in the damping curve for this

mode, one part increasing and the other decreasing

to become unstable at V/fIR > 1.25 (Figure 4). This

is a unique instability for a two-bladed rotor, similar

to the 1/rev divergence of a two-bladed propeller

(Johnson{2]). The differential lag mode also shows

similar behavior at a high flight speed (Figure 4,

V/_R > 1.9), but remains stable.

4 Parametric Studies

Several paranmtric studies are carried out to deter-

mine the effect of key natural frequencies of the ro-

tor and wing on the critical flight speed and to ex-

amine the interactions between various modes for a

two-bladed rotor. The critical flight speed VI is the

7
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Figure 6: Effect of Flap Frequency (u_) on Critical

Flight Speed

speed at which the damping for a particular mode

becomes zero. For comparison, results of these para-

metric studies are plotted along with the results for a

three bladed rotor having the same non-dimensional

properties as the two-bladed rotor.

4.1 Rotor Frequencies

The rotor frequencies, _ and re, are independently

varied from their baseline values by factors varying

between 1.0 and 2.2. It must be noted that extreme

variations of in-vacuo flap and lag frequencies may

not be practically possible, but they are of theoret-

ical importance to establish the trends within the

design range. Also, since the baseline lag frequency

is a function of velocity as shown in Figure 3, the

factor for u¢ shifts the entire curve by a factor be-

tween 1.0 and 2.2. Since _t_ and v( are uncoupled,

in-vacuo flap and lag frequencies of the blades, an

increase in these frequencies must primarily effect

the /3z or _1 frequencies which are the differential

flap and lag frequencies of a coupled system with

aerodynamics.

Figures 6 and 7 show the results of varying ut_ and

u¢ by the indicated factors from their baseline val-
ues. Dotted lines show the results for a three-bladed

rotor having the same non-dimensional properties

as the two-bladed rotor. Note that, in these fig-

ures, only the most critical modes for whirl stability

are shown. Figures 8 and 9, respectively show the

frequency and damping characteristics for two and

three-bladed rotors when v_ is increased by a factor

of 1.1 from its baseline value. Frequency and damp-

ing characteristics, with v z increased to 1.5 times its

1,8

17

OC 1.6

1.5

1.4
1;

0 1

0.9

o-8_

--- Two-Bladed

- - Three-Bladed

. --_- | J

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 z1 2.2

v¢ Factor

Figure 7: Effect of Lag Frequency (u¢) on Critical

Flight Speed

baseline value, are shown in Figures 10 and 11 for

two and thr,._e-bladed rotors respectively. The prin-

cipal obser_Ltions (italicized) are enumerated below

along with their explanations (non-italicized).

1. For a two.bladed rotor, the wing beam mode b does

not become ur_table for the covered range of ut3 and

v_. This is a key difference between two and three-

bladed rotors. It is evident from Figures 6 and 7

that the wing beam mode is quite critical for three-

bladed rotors, especially for low flap frequency, but
it is stable for the two-bladed case.

For a three-bladed rotor, the wing beam mode be-

comes unstable due to its interaction with the/3- 1

and torsion modes (see Nixon(5]). As shown in Fig-

ures 5 and 9, the ( - 1 mode frequency acts as a

barrier betw,:en the/3 - 1 and beam mode frequen-
cies at low flight speeds, but when the /3 - 1 fre-

quency crosses above the _ - 1 frequency it drives

the beam mode into an instability. As u_ factor is

increased beyond 1.4, the beam mode for a three-
bladed rotor does not become unstable as shown in

Figure 6. Nixon [5] showed that this is because of

increased int_.'raction between the rotor flap and lag

modes and due to an increase in the wing torsion fre-

quency whic_ moves it further away from the wing
beam mode frequency.

For a two-bladed rotor the differential flap (/3z) fre-

quency does not interact strongly with the wing

beam mode trequency for the covered range of uZ

as shown in Figures 4, 8 and 10. Thus, the wing
beam mode r,;mains stable for a two-bladed rotor.

2. As shown in Figure 6 the wing chord mode for

a two-bladed lvtor initially becomes less stable as vfl

8
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is increased and then becomes more stable. Chord

mode damping for a two-bladed rotor is affected by

the placement of the/31, (l and wing torsion frequen-
cies relative to the chord mode frequency. The/3z

frequency exerts a destabilizing influence on wing

chord mode damping, whereas wing torsion fre-

quency has a stabilizing influence on it. For low _

factors (u_ < 1.5), the (] mode frequency falls be-

low the torsion mode frequency for V/flR _ 0.5-1.0

(see Figures 4 and 8). In this range, the chord mode

damping reduces faster and the overall effect is a

slight reduction in critical flight speed for u_ fac-

tors I.I and 1.2. For u_ factors above 1.5,the (]

mode frequency does not cross below the torsion

mode frequency and also the /3z mode frequency

moves further away from the chord mode frequency

for V/fIR < 1.1 as shown in Figure 10. This stabi-

lizes the wing chord mode at low flight speeds, but

the increase in its critical flight speed is not signif-

icantly large since the/3z mode frequency interacts

very strongly with the chord mode at higher flight

speeds (Figure 10(a)).

In case of a three-bladed rotor the wing chord mode

gains greater stability as u_ is increased, as shown

in Figure 6 since, for a three-bladed rotor, the in-

stability in the wing chord mode is caused by its

9
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interaction with the fl - 1 mode (Nixon[5l). As z_

is increased, the fl- 1 mode frequency crosses above

the ( - 1 mode frequency at a higher flight speed

(see Figures 5, 9 and 11). This leads to an increase

in the critical flight speed for the wing chord mode

in case of a three-bladed rotor.

From the above discussion it is clear that the wing

chord mode is driven into an instability due to its

interaction with the rotor flapping mode, for both

two and three-bladed rotors and, in both cases, the

placement of the rotor lag frequency is important.

However, in case of a two-bladed rotor there is a sig-

nificantly greater interaction between the wing chord

03
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Figure 11: Frequency and Damping Characteristics

for _,_ Factor 1.5 (Three-Bladed Rotor)

and torsion modes. Further evidence of this interac-

tion is preser, ted in Section 4.2.

3. As shown in Figure 6, the wing chord mode for a

two-bladed rotor does not become unstable when r,_

factor is greater than 2.0, but an instability develops

in the (z mode at this point. For a two-bladed rotor,

as the/3z frequency increases, it has a lesser inter-

action with the chord mode and greater interaction

with the (z mode. Consequently, (z mode damping

reduces sharply as shown in Figures 4, 8 and 10.

For a three-bladed rotor also, there is a significant re-

duction in the damping for the (-1 and (+ 1 modes

due to greate_ interactions with the rotor flap modes
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(see Figures 5, 9 and 11), as v_ is increased. Such
interaction leads to an instability in the highest fre-

quency rotor mode (Nixon[5]). As shown in Figure

6, for u/_ factors between 1.3 and 1.95, the ¢-kl mode

is unstable in case of a three-bladed rotor. When v#

factor increases above 1.95, the/3 -k 1 mode becomes

the rotor mode with the highest frequency and thus

the instability shifts to the/3 ÷ 1 mode (Figure 6).

For a two-bladed rotor, the instability in the G mode

occurs only when the v/_ factor is increased beyond

2.0, in contrast to the three-bladed case where the

( + 1 mode becomes unstable for uZ factors greater

0.3--,
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Figure 13: Frequency and Damping Characteristics

for vc Factor 1.1 (Three-Bladed Rotor)

than 1.3 (Figure 6). This is because for a two-

bladed rotor, at high values of z/_, the/3] mode fre-

quency has a close interaction with the (] mode fre-

quency only at low flight speeds (see Figure 10). At

higher flight speeds, the f_z mode frequency falls be-

low 1/rev and interacts more with the wing chord

mode. This stabilizes the Cz mode at higher speeds

as shown in Figure 10(b). For a three-bladed ro-

tor, the/3 + 1 mode frequency is close to the ¢ -t- 1

mode frequency even for the baseline case (Figure

5). Thus, only a small increase in z//_ is needed to

increase the interaction between the ( + 1 and f/+ 1

modes and thus drive the _ -t- 1 mode unstable in
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case of a three-bladed rotor, whereas a much larger

increase in u/_ is required for the fl] mode frequency

of the two-bladed rotor to cause an instability in the

¢'z mode.

4. As shown in Figure 6 the wing torsion mode

becomes more stable as u_ factor increases and be-

comes completely stable for u# factors above 1.6. For

a two-bladed rotor, as the /?l frequency increases,

it causes an increase in the wing torsion frequency

as well (see Figures 4, 8, 10). This increases the

flight speed at which the wing torsion mode diverges

(i.e., speed at which the Floquet multiplier for tor-

sion becomes real) and thus there is an increase in
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Figure 15: Frequency and Damping Characteristics

for u( Factoz 1.5 (Three-Bladed Rotor)

the critical flight speed. Also, overall increase in

the f_z frequency causes it to rise above the chord

mode frequeacy for V/12R > 1.2 (see Figure 10),
and thus interact more with the torsion mode. This

causes an increase in damping for the torsion mode

at higher flight speeds, ultimately making this mode

completely stable.

For a three-bladed rotor also, the wing torsion mode

becomes more stable as u/_ is increased as seen from

the torsion mode damping in Figures 5, 9 and 11.

This is because of an increase in torsion mode fre-

quency which moves it further away from the fl - 1

mode frequer_cy.
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5.For a two-bladed rotor, the wing chord mode ini-

tially becomes less stable as v¢ ]actor is increased to

1.2, then becomes more stable with v¢ factor and re-

mains relatively unaffected for v¢ factors above 1.8

(Figure 7). There are three effects at work here.

Firstly, an increase in the _'1 frequency causes an in-

crease in the flight speed where its principal value

crosses the chord mode frequency. Thus the cross-

over now takes place at a point where the _1 mode

damping is higher than the chord mode damping,

resulting in a damping peak in the chord mode in-

stead of a valley (Figure 12(b)). This peak shifts to

higher flight speeds as v¢ factor increases. Secondly,

an increase in _1 frequency reduces the range of flight

speeds over which it is below the torsion frequency

(see Figures 4 and 12) . This is a stabilizing effect
for the chord mode as discussed before. Thirdly,

the portion of the fll frequency below the chord fre-

quency increases so that there is greater interaction

between the fll and chord modes, which is destabi-

lizing (Figures 12(a) and 14(a)). For v¢ factors of

1.1 and 1.2, the third effect is slightly greater than

the first two leading to a slight decrease in the crit-

ical flight speed. For higher v¢ factors, the first two

factors cause an increase in the critical flight speed.

For v¢ factors above 1.8, the _1 frequency does not

have a great effect on any other mode and thus the

critical flight speed for the chord mode becomes rel-

atively constant under the opposing influences of the

fll and wing torsion modes.

For a three-bladed rotor, the wing chord mode be-

comes more stable as v_ is increased, until about

1.7v¢, then remains relatively unaffected (Figure 7).

For low values of re, the damping in the wing chord

mode for a three-bladed rotor is strongly influenced

by the location of the ( - 1 frequency (Nixon[51).

As v¢ increases, there is an increase in the (- 1 fre-

quency as seen in Figure 15. This increases the flight

speed at which the ( - 1 mode frequency crosses the

chord mode frequency, leading to an increase in the

critical flight speed for the chord mode. Beyond a

v¢ factorof 1.7,the ( - i frequency moves above the

wing torsion frequency and thus the flutterin the

chord mode becomes dominated by the fl- 1 mode

(Nixon[5l).

For both two and three-bladed rotors, at higher val-

ues of re, the wing chord mode flutter becomes dom-

inated by the flap mode. However, for low v¢ the

chord mode for a two-bladed rotor behaves differ-

ently due to the greater interaction between the wing

torsion and chord modes for a two-bladed rotor.

6. As shown in Figure 7, for a two-bladed rotor,

the unng torsion mode stabilizes slightly as v¢ fac-

tor increases to 1.7 and then destabilizes slightly

for greater v¢ factors. For both two and three-
bladed rotors, an increase in v¢ causes an increase

in the torsion mode frequency which is most pro-

nounced at low flight speeds (Figures 14(a) and

15(a), V/f_R < 0.3). For a two-bladed rotor this

leads to an ,ncrease in the flight speed at which the

torsion mode diverges, i.e. the flight speed at which

the torsion mode Floquet multiplier becomes real.

This causes the split in the torsion mode damping

to occur at a higher flight speed and thus there is an

increase in the critical flight speed. As the v_ fac-

tor increas_ beyond 1.7, the effect of t_l frequency

on the torsion frequency diminishes in the case of

a two-bladed rotor. This causes a slight decrease

in the flight speed at which the torsion mode di-

verges, leading to a slight decrease in the critical

flight speed.

4.2 Wing Frequencies

Figfires 16, 17 and 18 show the variation of criti-

cal flight sp_l as the wing beam, chord and tor-
sion stiffness_ (i.e. frequencies) are varied (indepen-

dently) from their baseline values. Nixont5] showed

that, for a three-bladed rotor, the stability of the

wing beam mode depends on the proximity of the

wing beam mode frequency to the wing torsion fre-

quency. As shown in Figure 16, when the wing

beam stiffness is reduced for a three-bladed rotor,

the beam mode becomes more stable because the

beam mode frequency moves away from the torsion

frequency. Conversely, a reduction in the wing tor-

sional stiffness for a three-bladed rotor brings the

torsion mode frequency closer to the beam mode

frequency, leading to a reduction in beam mode sta-

bility as shown in Figure 18. Nixon [51 also showed

that varying the wing frequencies causes a mild ef-

fect on wing chord mode stability for a three-bladed

rotor because, in this case, the wing chord mode is

not highly coupled to the other two wing modes (see

Figures 16, 17 and 18).

For a two-bladed rotor, varying the wing beam fre-

quency has a mild effect on the stability of the wing

chord and torsion modes (Figure 16), since the beam

mode does not have much interaction with any of

the other modes. When the frequency of the wing

beam mode increases, it increases the flight speed

at which the Floquet multiplier for the wing torsion
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mode becomes real. This leads to a small increase

in the critical flight speed for the wing torsion mode

of a two-bladed rotor. Also, greater interaction be-

tween the beam and torsion modes slightly reduces

the stabilizing influence that the torsion mode ex-

erts over the chord mode in the case of a two-bladed

rotor. This leads to a slight decrease in the critical

flight speed for the chord mode as wing beamwise

stiffness (EIb) is increased.

The effects of wing chordwise stiffness (EIc) and

wing torsional stiffness (G J) on critical flight speed

of a two-bladed system are more pronounced. Sev-

eral observations regarding Figures 17 and 18 are

enumerated below (italicized) along with their ex-

planations (non-italicized).

1. As shown in Figure 17, the wing chord mode for a

two-bladed rotor becomes more stable as its frequency

is reduced. As discussed earlier, for a two-bladed ro-

tor, wing chord mode damping depends on the place-

ment of the/_l, _] and wing torsion frequencies with

respect to each other and also with respect to the

wing chord mode frequency. As the chord mode fre-

quency reduces, the f_l and _] frequencies move fur-

ther away from the chord frequency for V/fiR < 1.

This increases the stability of the wing chord mode.

2. For a two-bladed rotor, increasing the wing chord

mode frequency from its baseline value leads to a

slight reduction in its critical flight speed initially

(up to EIc factor 1.2), and then a slight increase

takes place (Figure 17). As the wing chord mode fre-

quency increases it comes closer to the torsion and

fl frequencies for a two-bladed rotor. The net ef-

fect is a slight decrease in stability initially, due to
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the influence of the 131 mode, and then an increase

due to the interaction between the wing chord and

torsion mod_.

3. Increasing the wing chord mode frequency has a

small stabili_ing influence on the wing torsion mode

of a two-bladed system (Figure 10). In this case, as

EIe increases, greater interaction between the wing

chord and torsion modes causes a slight reduction

in the rate at which the torsion mode damping re-

duces, beyond the point of divergence (i.e., the air-

speed at which the Floquet multiplier for wing tor-

sion becom_ real). This causes a slight increase in

the critical flight speed for the torsion mode.

4. As shown in Figure 18, a reduction in the wing

torsion frequency from its baseline value causes a

large increase in chord mode critical flight speed for
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a two-bladed system. There are two effects at work
here. Firstly, as the torsion mode frequency reduces,
the _1 frequency is unable to cross below it. This
causes a significant reduction in the rate at which
the chord mode damping reduces with flight speed,

due to greater interaction between the torsion and
chord modes (see Figure 19). Secondly, a reduction
in torsion frequency reduces the portion of the /_z

frequency that lies below the chord frequency (see
Figure 19, V/f_R > 1). This leads to reduced inter-
action between the f_] and chord modes, leading to
an increase in chord mode damping at higher flight

speeds. The overall effect is a large increase in chord
mode critical flight speed for the two-bladed system,
as GJ is reduced.

5. For a two+bladed rotor, a reduction m the wing
torsion frequency significantly reduces the stability
of the torsion mode (Figure 18}. This is primarily
a result of the loss in stiffness of the wing torsion
mode, which reduces the airspeed at which the Flo-
quet multiplier for wing torsion becomes real (i.e.
the airspeed at which the wing torsion frequency re-
duces to 1/rev). Also, as the torsion frequency re-
duces, the interaction between ffz and torsion modes

15
American Institute of Aeronautics and Ast ronautics



reduces for low airspeeds (V/f_R < 0.5). This causes

a reduction in torsion mode damping at low speeds.

Consequently, when the torsion mode frequency be-

comes l/rev, it has a lower damping for low GJ fac-

tors. This causes a significant reduction in torsion

mode stability.

Similar to a three-bladed system, the wing beam

mode damping for a two-bladed rotor also reduces

when GJ is reduced. This is because the wing beam

mode is coupled to the wing torsion mode through

the wing chordwise mass offset. However, for a two-

bladed rotor, the beam mode remains stable for most

GJ factors, becoming unstable (at V/f_R = 1.24)

only when GJ is reduced by half (not shown in Fig-

ure 18).

The most important result of the wing frequency

study is the greater coupling between the wing chord

and torsion modes for a two-bladed rotor in contrast

to the three-bladed case. Figures 16, 17 and 18 show

that wing chord and torsion modes are the governing

modes for stability of a two-bladed proprotor. It is

also evident that for a three-bladed rotor, changing

the wing frequencies has little effect on chord mode

stability. But for a two-bladed rotor, the effect of
EIc factor and GJ factor on chord mode stability

is quite pronounced. This indicates that there is

greater interaction between chord and torsion modes

for two-bladed rotors, as discussed in Section 4.1. A

comparison of wing chord mode damping for two and

three-bladed rotors (see Figures 19(b) and 20(b)), as

affected by the wing torsional frequency, confirms

the increased coupling of wing chord and torsion

modes for two-bladed systems. In Figure 19(a), for

low flight speeds (V/_2R < 1.0), only the wing tor-

sion frequency is effected by the change in wing tor-

sional stiffness. Thus, for the two-bladed system, the

change in chord mode damping (Figure 19(b)) must

be due to the interaction between the wing torsion

and chord modes. In contrast, for the three-bladed

system, the change in wing torsional frequency has

only the slightest effect on chord mode damping

(Figure 20), indicating a very weak coupling between

wing chord and torsion modes.

5 Conclusions

The results of several parametric studies on the sta-

bility of two-bladed proprotors are presented. These

studies illustrate the special nature of two-bladed ro-

tors as opposed to three or multi-bladed rotors. Un-

like a three-bladed rotor, the wing beam mode for a

two-bladed rotor does not interact much with any of

the other modes and thus remains stable. The wing

torsion mode exhibits a unique instability similar to

a wing torsi,)nal divergence at 1/rev frequency. Also,

the interaction between the wing chord and torsion

modes is much more pronounced in the case of two-

bladed rotors. It is shown that the stability of the

wing chord mode is governed by a complex interac-

tion between the rotor differential flap, differential

lag and the wing torsion and chord modes. Also, the

wing chord and torsion modes are the two modes

that govern the stability of two-bladed proprotors

over the range of parameters considered.
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Appendix

For an even number of blades,

FF= [_o _1c _1.... _Mc OM, aN/2]r

(1)

(F = [¢o ¢1c ¢1o ... ¢,,o Cu° CN/2]r (2)

For an odd number of blades,

fir = [.Bo l_l, 131.... 13M_ t_M°] T (3)

(F= [¢0 _1o ¢1.... ¢_,c ¢.°]T (4)
where,

{ NN_._--2ifNisevenM = 2 if N is odd (5)

[z;] =
/_ 0 0 ...]

o l_ o
o o x;
- : :

N×N

(6)

[g;] =

I_ o o
o I;_$ o
o o z;_
° . .

NxN

(7)

[I;_l=
: : : : :

o o s; zk_sN -z;_cN

where,

Sm = sinCr, and Cm = cosOm

0}0

0

0 Nx6

(8)
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[c;p] =

0 0 0 2/_c1 2/_asl o]
0 0 0 2 3,_C2 2I_,_$2 0 r*C0 0 0 213_ 3 213.s3 0

0 0 0 2_c_CN 21_o,-qN 0 N×6

(9)

[_] =

1 0

0 0

0 0

0 0

0 -sinA

0 -cosA

°°° 1
sinA 0 0

cosA 0 0

0 1 0

0 0 cosA

0 0 -sinA

(16)

[i;] =

I_ 0 0 ...

0 I_ 0 ...

0 0 I_ ...

. . . ...
NxN

(10)

IK_]=
I_ o o ... J

o I_ o
o o ¢_
: : :

NxN

(11)

[I_,,] = s_

Sl -C1 0 hCl fiS1 f ]
$2 -C2 0 hC2 hSu f

Sa -Ca 0 hCa hSa f

SN --CN 0 heN hSN f N×6

(12)

_th-
where, f = s_ "

I cos_21 sin¢l ... sinM¢l ]
1 cos¢2 sin¢2 ... sinM_ J[TRF] = : . : ... :

1 COSCN sinCN ... sinMCN

(13)

The column [-1 1 ... (--1)N] T must be ap-

pended to [TRF] if N is even.

The wing-tip degrees of freedom are,

l_Tiv= [wt w; ve vi Ct] T (14)

Pylon degrees of freedom (p-) are given by,

if: [TA] $_T,v (15)
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